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Fourier's Law 

We investigate the stationary nonequilibrium (heat transporting) states of 
the Lorentz gas. This is a gas of classical point particles moving in a region 
A containing also fixed (hard sphere) scatterers of radius R. The stationary 
state considered is obtained by imposing stochastic boundary conditions 
at the top and bottom of A, i.e., a particle hitting one of these walls comes off 
with a velocity distribution corresponding to temperatures 7"1 and T2 
respectively, 7"1 < T2. Letting p be the average density of the randomly 
distributed scatterers we show that in the Boltzmann-Grad limit, p -~- ~ ,  
R - +  0 with the mean free path fixed, the stationary distribution of the 
Lorentz gas converges in the Ll-norm to the stationary distribution of the 
corresponding linear Boltzmann equation with the same boundary condi- 
tions. In particular, the steady state heat flow in the Lorentz gas converges 
to that of the linear Boltzmann equation, which is known to behave as 
(T2 - T1)]L for large L, where L is the distance from the bottom to the top 
wall: i.e., Fourier's law of heat conduction is valid in the limit. The heat 
flow converges even in probability. Generalizations of our result for 
scatterers with a smooth potential as well as the related diffusion problem 
are discussed. 

KEY WORDS: Thermal conductivity; low-density (Boltzmann-Grad) 
limit ; kinetic definition of transport coefficients. 

1,  I N T R O D U C T I O N  

E q u i l i b r i u m  stat is t ical  m e c h a n i c s  has  va r ious  m o d e l  sys tems wh ich  (a) have  

a bas ic  s t ruc ture  qua l i t a t ive ly  s imi lar  to  s o m e  real  sys tems  and  (b) exhib i t  in 

a prec ise  m a t h e m a t i c a l  f o r m  in te res t ing  p h e n o m e n a  obse rved  in real  sys tems.  
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There is then little doubt that the phenomena of interest in the real system 
are of the same origin as in the model. We have in mind here particularly the 
model system for real ferromagnetism, spins on a lattice, for which the 
existence of a spontaneous magnetization at low temperatures can be proven 
rigorously. (1~'5 In contrast there are at present no model dynamical systems 
for which kinetic laws, such as Fourier 's law of heat conduction, can be 
proven to hold. It  is the purpose of this note to provide what we believe 
comes closest to such a model system. (This will also show how far we still 
are from a real microscopic understanding of nonequilibrium phenomena.) 

The system we consider is that of particles moving independently among 
fixed, " randomly  distributed" scatterers. This system is commonly known in 
statistical mechanics, at least when the scatters are hard spheres--the case 
we shall primarily consider--as the Lorentz gas (3~.6 or Sinai's billiards5 5~ It  
models the scattering of electrons by impurities in a solid. (It is closely related 
to the simpler Enrenfest wind-tree model, C6~ where the scatterers are polygons 
enabling a restriction to a discrete momentum space.) For simplicity the 
system is confined to a rectangular box A c N 3 with a base and ceiling at 
z = 0 and z = L and a cross-sectional area B in the x-y planes. (The analysis 
will hold for more general A c R e, d >/ 2.) Inside the box there are spheres 
(trees) of radius R located at " r a n d o m "  positions with a density p. The space 
outside the spheres is occupied by point (wind) particles of unit mass and 
density n. These particles move freely and are scattered elastically by the fixed 
spheres. 

To induce a heat flow in this system we imagine the bot tom and top 
walls to be kept " c o l d "  and " h o t "  at temperatures/ '1  and T2, respectively, 
T1 < T2. This means (in the simplest case) the following: a wind particle 
hitting either the bottom or the top wall will, independent of its incoming 
velocity, leave the wall with a velocity distribution characteristic of  a particle 
coming from a thermal reservoir at the temperature of that wall. (7-~ (We 
may imagine our particle to interact very strongly with the wall atoms, taking 
on their temperature almost instantaneously.) At all other walls a wind 
particle is specularly reflected. (Alternatively, we could use periodic boundary 
conditions in the x and y directions.) 

We ask now for the amount of  energy transported per unit time and per 
unit area J from the hot wall to the cold wall in the steady state, i.e., when the 
velocity and the spatial distribution of the wind particles, moving under the 
combination of the deterministic dynamics in the box and the stochastic 
boundary conditions described above, is stationary. According to Fourier 's 
law we should have for L >> (pR 2)- 1, which is of the order of the mean free 

5 See Ref. 2 for recent results. 
6 See Ref. 4 for a review of theoretical and experimental work. 
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path, J = K(T2 -- T1)/L, with 0 < K < oo the thermal conductivity. It  is the 
proportionality between J and L -1 for large L that is here the crux of 
the kinetic law and begs for a derivation in a mathematically convincing 
way.(10,1~) 

A little thought shows that in this system the steady-state heat flux is 
approximately proportional to the fraction of particles, starting on the wall 
{z = 0} with the appropriate velocity distribution, that reach the wall at 
{z = L) before hitting the wall {z = 0) again. The proof  of  the validity of  
Fourier 's law then boils down to showing that this fraction goes asymp- 
totically as 1/L. Now it is clear that there will be configurations Q = 
(QI ..... Qj) of  scatterers (Q~ e A denotes the center of  the ith scatterer) for 
which the heat flow J~(L, B) will not have the proper asymptotic behavior. 
Thus, if all the scatterers are located in a box A' c A bounded by {z = 0} and 
{z = L) but only occupying a fraction of the base B, then the fraction of 
particles reaching {z = L} will not vanish and LJQ(L, B) will diverge as 
L--> oo. This is what happens in a Knudsen gas Cs~ or a perfect harmonic 
crystal, (~~ but this is clearly the kind of pathology in which we are not 
interested here. We want to model real systems in which the scatterers 
(impurities) are "un i fo rmly"  distributed throughout the macroscopic region 
A. We shall translate the above physical statement into appropriate mathe- 
matical language as follows: Consider randomly located scatterers whose 
distribution tz (R~, which may be defined (once and for all) for all of ~3 even 
though only the part  inside A is relevant, is translation invariant and has 
" g o o d "  cluster properties, i.e., the correlation between the position of  
scatterers located in different regions decays to zero as the distance between 
these regions grows to infinity. We then wish to show that the average thermal 
conductivity f dtz(R~(Q)LJQ(L, B)/(T2 - 7"1) (computed in the stationary state 
of  the wind particles) approaches a well-defined limit as first B and then 
L -+ ~ .  Furthermore, in the limit the random variable LJO(L, B) should not 
fluctuate, i.e., we expect to obtain the same thermal conductivity for almost all 
configurations. 

The averaging over scatterer configurations may be given a direct 
physical meaning by imagining that the box A is divided up in boxes A~ of 
height L and cross-sectional areas B~, B = U~ B~. For B~ "sufficiently large"  
the distribution of scatterers in A~ as well as the flux through a cross section 
of A~ will be approximately independent of what happens in As, j r i. The 
total flux J will then be an average over the different J~ and will correspond in 
appropriate limits to the average of J~(L, B) over different configurations of  
scatterers. (This is similar to averaging the free energy in "quenched"  
systems.) 

7 See Refs. 13 for a harmonic chain with random masses JL = cL-I~L 



636 Joel L. Lebowitz and Herbert Spohn 

Unfortunately we cannot prove the pseudotheorem outlined above even 
for the simplest case where the distribution of the scatterers is a simple Poisson 
process with density p. The difficulty lies in the fact that the motion of the 
wind particle through A, now considered as a stochastic process where the 
various paths are weighted according to the probability of the corresponding 
configuration of  scatterers, is not a Markov process. The wind particle 
remembers the scatterer with which it has previously collided. This is what 
distinguishes this dynamical system from ones described by a linear Boltzmann 
equation in which the process is Markovian: The particle is scattered in a 
certain direction with a certain probability depending on the differential 
cross section independent of its past history, where Fourier's law can be readily 
proven. (14~ It is known, however, that in the Bottzmann-Grad limit [corre- 
sponding to the density of scatterers p --~ o% their radius R -+ 0 in such a way 
that the mean free path (oR 2)- 1 is kept constant, while the fraction of volume 
oR 3 occupied by the scatterers vanishes], the motion of the wind particles is 
indeed described by a linear Boltzmann equation. (15-17) The reason for this 
transition to a Markovian behavior is that in this limit the probability of a 
wind particle colliding more than once with the same scatterer during any 
fixed time interval ~- vanishes. Using this fact, we shall establish the following 
results: 

(i) The steady state f(•)(q, p) of the Lorentz gas (with the above- 
mentioned stochastic boundary conditions) converges almost everywhere to 
the steady state of the linear Boltzmann equation (with the same boundary 
conditions) in the Boltzmann-Grad limit R ~ 0. 

(ii) Let JQ(q; L) be the steady-state heat flux at the point q (through a 
cross-sectional area parallel to the x-y plane) for a given configuration Q of 
scatterers with radius R and let J(n)(q; L) be jO(q; L) averaged over the 
Poisson distribution of scatterers with density R-2p. Let J(q; L) be the steady- 
state heat flux at point q obtained from the steady state of the linear Boltz- 
mann equation with collision rate p, which for L << p- 1 is proportional to 
(I"2 - TI)/L. Then given any e > 0 we can find an R sufficiently small such 
that I J(n)(q; L) - J(q; L)I < c/L, i.e., for fixed L the difference in the thermal 
conductivities can be made arbitrarily small. 

(iii) The random heat flux Q-+JQ(q;L) converges in probability to 
J(q; L) in the Boltzmann-Grad limit R--~ 0. (The same result holds for all 
averages in the steady state.) 

In Section 2 we study the stationary state of the Lorentz gas. In Section 3 
we briefly describe what is known about the stationary solution of the linear 
Boltzmann equation subject to the stochastic boundary conditions described 
above. In Section 4 we prove the convergence of the stationary distributions. 
In Section 5 we comment upon generalizations of our model, in particular to 
the case of scatterers with a smooth potential. 
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2. T H E  S T A T I O N A R Y  S T A T E  OF  T H E  L O R E N T Z  G A S  

We choose a box A c •3 with volume [A] orientated along the coordinate 
axis with bottom at {z = 0} and top at {z = L). Inside the box we have 
randomly distributed hard sphere scatterers. The phase space of the scatterers 
is I ~ = U j -o  AJ. We let Q ~ p stand for a configuration of scatterers of 
radius R. Since the scatterers are indistinguishable, their distribution is 
specified by a probability measure on all finite subsets of A, which in the 
usual way can be thought of as a symmetric measure/z (g~ on P. We assume 
that/z (R) is the Poisson distribution with densities 

{~  exp[--lA,(~rR2)-Zp](zrR2)-Jp~)j~o (1) 

The reason for setting the density equal to p/zrR 2 is related to taking the 
Boltzmann-Grad limit, as will become clear later. Note that we are permitting 
the scatterers to overlap. But our results also hold for nonoverlapping 
scatterers. 

The Lorentz gas is an ideal gas moving among the scatterers. Since there 
is no interaction between the gas particles, we can reduce the problem to the 
motion of a single particle. Let (q, p) = (x, y, z, p ) ~  A x R a denote the 
position and momentum of the moving particle. For  a fixed configuration of 
scatterers Q, let (q, p) ~-+ T,~ p) be the mechanical motion defined by free 
motion and specular reflection upon hitting either one of the scatterers or the 
boundary of A. On the phase space where incoming and reflected momentum 
are identified Tt ~ is a smooth flow which preserves the Lebesgue measure. For  
the flow to be defined for (almost) all initial conditions (q, p) ~ A x ~3 we 
assume that TtO(q,p) = (q,p) if [q - Q,[ < R for some Qi, where Q = 
(Q1 ,..., Qj), i.e., a particle inside a scatterer just stays there. 

We want the surface {z = 0} to model a " c o l d "  reservoir and the surface 
{z -- L} a " h o t "  reservoir. We do this by assuming a stochastic gas-surface 
interaction. (8,9) One can easily imagine more sophisticated, even mechanical 
versions of a heat reservoir. But, after all, the thermal conductivity should be 
a property of the system and insensitive to the detailed nature of the heat 
reservoir. A natural choice for the stochastic boundary condition would be 
that the moving particle arriving at the bottom (top) wall is emitted with a 
Maxwellian velocity distribution corresponding to the temperature of that 
wall. However, the structure of the steady state is more clearly displayed 
without such specific assumptions. Let us introduce polar coordinates 
(~, v) = (~, 0, v) for the momentum p and let e be the inward normal at the 
surface of A. I f  the particle arrives at the ~th wall (c~ = 1 stands for the bottom 
wall and c~ = 2 stands for the top wall), then, independent of its incoming 
velocity, its outgoing velocity at the same point will be in p + dp with 
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probability max(0, e.p)p~(p)dp. Now p~, c~ = 1, 2, is assumed to depend 
only on the speed, p~(p) = o~([Pl), and by definition has to be normalized to 

fo dv vap~(v) = 1 (2) 

We assume that the first three moments of p~ are finite. The emission proba- 
bility is chosen in such a way that for pl = p~ = p, p (p)dp x (uniform distri- 
bution outside the scatterers) is stationary. (More general stochastic boundary 
conditions will be discussed in Section 5.) 

At this point it is convenient to change to the language of stochastic 
processes. Let A be the set of all possible trajectories (q(t), p(t)) = X(t). The 
q(t) takes values in A, p(t)  in iR a. The set/X consists of all paths that are piece- 
wise of the form of free motion, i.e., of  the form t ~+ (q + pt, p). A probability 
measure on A defines then in the usual way a stochastic process. In our model 
we have to distinguish three different types of processes. For a fixed con- 
figuration Q of scatterers we have the process given by the mechanical 
evolution Tt Q and the stochastic transition at {z = 0} and {z = L} as described 
above, Starting the particle at (q, p), this defines a Markov process on A with 
measure P~(. ]q, p). Averaging over the scatterers defines a new process on A 
with measure 

p,R,(. ]q, p) = ~r d~(~'(Q) po(. I q, P) (3) 

This process describes the evolution of the Lorentz gas. The crucial point, 
which makes for all the difficulty in the problem, is that this process is non- 
Markovian. If the Lorentz particle collides With one of the scatterers twice, 
then, because of the mechanical evolution, these two scattering events are 
dependent. In fact, it is the non-Markovian nature of this process that is 
responsible for such interesting physical effects as the long-time tail of the 
velocity autocorrelation function. (tS~ Finally, as R -+ 0, we obtain a process 
X(t) on A with measure P(. ]q,p) which is again Markovian (but non- 
mechanical). Its transition probability is determined by a linear Boltzmann 
equation. This process will be described in more detail in the next section. 

A word on our notation: A quantity that depends on the specific con- 
figuration Q of scatterers is denoted by a superscript Q--e.g., Je(q; L) is the 
heat flow for the fixed configuration Q at the point q. Its average over the 
Poisson distribution (1) is denoted by a superscript (R)--e.g., the average 
heat flux is J(R~(q;L). Here we indicate explicitly the R dependence, since we 
want to investigate the limit R ~ 0. Finally, the corresponding quantities 
obtained from the linear Boltzmann equation have no superscript--e.g., 
J(q; L) is the heat flow at the point q as given by the linear Boltzmann equation. 

We turn to the problem of finding a convenient expression for the 
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stationary state of the Lorentz gas. It turns out that the stationary state can 
be expressed in terms of absorption probabilities, which therefore will be 
defined now. In addition, the absorption probabilities are the natural objects 
for which the existence of the Boltzmann-Grad limit can be proved. 

Let ~A = {z = 0} t3 {z = L} c A be the surfaces with temperatures. 
Let (q, p) be the initial point and let us follow the trajectory TO_t(q, p), t >1 0, 
i.e., backward in time, until it first reaches the surface ~A at a certain point 
denoted by q0. We define a probability measure P~b~(" [q,p) on 0A by the 
prescription that e2b~(A] q, p) = 1 if qo ~ A, and P~b~(A{q, p) = 0 if q0 ~ A 
for any measurable set A c OA. [P~b~(' I q, P) is a delta function at q0-] 
P~b~(" I q, P) is also the probability that, for a fixed configuration Q, the 
particle is absorbed in the set A, following its trajectory forward in time, 
given that the particle started at position q with velocity - p ,  i.e., at (q, - p ) .  
This latter prescription may be used to define the absorption probabilities 
p(R) abs(A[q,p) and Pab~(AIq, p) for the Lorentz process X(t) with measure 
P(~)(. [q,p) and for the Markov process X(t) with measure P(. [q,p) corre- 

(/~) sponding to the linear Boltzmann equation. Clearly, Pab~(A[q,p)= 
f dl~(R)(Q) PgbXAlq, P). 

For hard sphere scatterers the absorption probabilities are independent 
of the initial speed v. Because of this simplifying feature and because p~ 
depends only on v, only the probability of being absorbed by either the bottom 
or the top wall enters the analysis. We denote these probabilities by P~Q(q, ~2), 
p(R)(q, f2), and P:(q, f2), a = 1, 2 (a = 1 stands for being absorbed at the 
bottom wall and c~ = 2 stands for being absorbed at the top wall). Now 
PIQ(q, f2) = l, if TtQ(q, --p), t >~ O, P/[Pl = f2, reaches first the bottom wall, 
and p O(q, f2) = 0, if TtQ(q, --p), t ~ O, reaches first the top wall. Again, 
p(R)(q, f2) = f dtz(R)(Q) p,O(q, f~). 

We now want to find the stationary state of the Lorentz gas with the 
specified boundary conditions. For  every fixed configuration Q of scatterers 
a stationary distribution of the Markov process with measure Po(. [ q, P) has 
to satisfy the following three conditions: 

1. fQ is constant along the flow lines of Tt o. Here a flow line terminates 
if it hits either one of the surfaces {z = 0} and {z = L}. We havefO(q, p) = 0 
for q inside a scatterer. 

2. The assumed nature of the boundary scattering and the requirement 
that incoming flux equals outgoing flux at every point of the wall leads to the 
conditions for e.p >1 0 

fO(x, y, O, P) = pl(P) ~e.p,~.o~dP' le.P'[fO(x, y, O, p ') 

f ~ ( x , y ,L ,p )  = P2(P) f~ dp' [e.p ' l fO(x,y,L,p ') 
e'p'<~O} 

(4) 
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3. Constant density n: 

fA dq dp fQ(q, p) = ntA [ (5) 
• R3 

(We shall take n = 1 from now on.) 
We claim that 

2 

fO(q,p)=[~=lp~(v)P~Q(q,~)]/N(Q) (6) 

where N(Q) (assumed to be different from zero) is defined through 

fA dq dp fQ(q, p) = [A] 
• R3 

satisfies the conditions 1-3 and is therefore a stationary distribution. 
Clear ly , f  ~ is constant along the flow lines of Tt Q. We check the boundary 

condition at {z = 0}. The first equation reduces, since P2Q(x, y, 0, f2) = 0 
for e. f2 /> 0, to 

1 = 1 f d~  ( - c o s  O)[PlO(x, y, O, ~) + P2O(x, y, O, ~)] (7) 
qT' { e ' ~ 0 }  

Equation (7) will be satisfied since P~Q(x, y, O, s P2Q(x, y, O, ~) = 1, 
unless the trajectory starting at (x, y, 0, - ~ )  reaches neither {z = 0} nor 
{z = L}. By the Poincar6 recurrence theorem, however, this can be the case 
only for a set of angles with zero d~-measure. 

In a natural way the "s ta t ionary"  distr ibutionf (R~ of the Lorentz gas is 
defined as the average o f f  Q over/z (R~. Note t h a t f  <R> does not satisfy an in- 
variance condition familiar from the Markovian case. I n d e e d f  (R> will not be 
stationary under the process peR>(. [ q, p). Nevertheless, we believe, for reasons 
given in the introduction, that this is the natural and right definition. As we 
shall also see later, if we consider the expectation value of some observable 
g (e.g., the heat flux), J" dq dp fQ(q, p)g(q, p), then it will equal its average for 
most configurations if R is chosen small enough. Therefore we obtain as the 
stationary distribution f(R) of the Lorentz gas with the specified boundary 
conditions 

r ] f(R>(q, p) = [~(R~(Fo)]-I . dl~(R>(Q) N(Q)-I p~(v)P~O(q, f~) (8) 
o p  

o 

with T' o = {Q e rtN(Q) > 0}. 
We can now define the steady-state heat flux JQ(q; L) at the point q 

through a cross-sectional area parallel to the x-y plane for a fixed configura- 
tion Q of scatterers by 

JQ(q; L) = �89 ~ dp p~p2f~(q, p) (9) 
d 
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and the average heat flux by 

j(R~(q; L) = �89 f dp p~p2f(R)(q, p) (10) 

where p~ is the z component of the momentum p. Local density and local 
temperature are defined in an analogous way. 

Note that we did not claim uniqueness o f f  ~. There is one trivial reason 
for nonuniqueness. Depending on the configuration Q, there may exist a 
set of nonzero measure of trajectories that never hit the bottom and top wall. 
On this set we can choose any distribution invariant under the flow Tt ~ 
However, in the Boltzmann-Grad limit, the probability of  the set of such 
configurations converges to zero. If  scatterers are not permitted to overlap, 
presumably, this will be true for all densities below close-packing. We believe 
that for configurations of scatterers that leave A connected, (6) is the unique 
stationary measure on the set of all trajectories hitting bottom and top wall 
and is unique among all measures that are absolutely continuous with respect 
to dq dp. Furthermore, there are good reasons to believe that (6) is not only 
unique (i.e., ergodic), but also that every initial distribution on trajectories 
hitting bottom or top walls converges weakly to f o  in the limit as t ~ oo. 
If  this is true for almost all configurations of scatterers, then the stationary 
distribution f ( ~  has a natural interpretation: in the limit of t --~ oo the state 
of the Lorentz gas approaches weakly f(R~ (provided the normalization is 
chosen correctly). 

3. T H E  S T A T I O N A R Y  S T A T E  IN T H E  B O L T Z M A N N - G R A D  
LIMIT 

To conclude that Fourier's law is approximately valid for small R we 
have to show first that it holds in the Boltzmann-Grad limit R--~ 0, where 
the motion of the particle is described by a linear Boltzmann equation. We 
therefore describe in this section the nature of this limit and discuss the 
stationary state of the resulting linear Boltzmann equation with the stochastic 
boundary conditions specified in Section 2. The problem of the convergence 
of stationary states f(R~ to the stationary state of  the Boltzmann equation is 
taken up in the next section. 

The measures /~(R) in (1) are written in the form appropriate for the 
Boltzmann-Grad limit: The mean free path of the moving particle remains 
constant as R - +  0 while the density of scatterers goes to infinity and the 
mean volume occupied by scatterers goes to zero. In this Boltzmann-Grad 
limit the probability of a particle colliding more than once with the same 
scatterer within any fixed time interval goes to zero. This in turn implies that 
all non-Markovian effects are eliminated in the limit and that the time evolu- 
tion of the Lorentz gas is then governed by a linear Boltzmann equation. 
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In fact, one can prove C17~ that all the finite-dimensional distributions 
P(~(X(q) ~ A1 ,..., X(t,) ~ A,[q,p) converge as R -+ 0 to P(X(q) ~ A1 ,... 
X(G) ~ Anlq, p). It turns out that P(. [ q, p) is a Markov process sometimes 
called a random flight process. The particle leaves the point q in direction f~ 
with speed v. The probability of a first collision (random jump in Q) in the 
time interval between t and t + dt is pve -"~t dt. Independent of the time of 
collision the particle is then scattered in the cone f~' + df~' with probability 
(I/4rr) dr2'. (In general, the scattering law is more complicated and, in partic- 
ular, depends on the incoming direction f2. Isotropic scattering is a peculiarity 
of hard-sphere scatterers in three dimensions.) The process continues then in 
the same fashion: the probability of a second collision a time ~- later in the 
time interval dr, ~- > 0, is pve -pv~ dr, etc. Whenever the first particle hits 
either the bottom or the top walt it will be scattered with the transition 
probability defined in Section 2. At all other surfaces the particle is specularly 
reflected. 

The time evolution of a probability dens i tyfunder  this process is given 
by the linear Boltzmann equation 

0 , 
f (q ,p ,  t) = - p  ~q f (q  p, t) 

[ l fs d~'  f (q ,  t) - f ( q , p , t ) ]  +plpl  2 

= (Sef)(q,p, t) (11) 

with collision rate p together with the stochastic boundary conditions. 
We shall now investigate the stationary solutions of (11). A stationary 

solution f h a s  to satisfy 5~'f = 0 and conditions 2 and 3 of Section 2. As in 
Section 2, one checks that these conditions are indeed satisfied for 

2 

f (q ,p )  = N -1 ~,  p~(v)P~(q, ~) (12) 
g = l  

with N determined through 

9. oo 

lAIN = E f dv v2p=(v) f dq dr2 P,~(q, f2) 

It can be shown that f is the unique stationary measure and that any initial 
measure converges exponentially fast to it as t -+  oo. Cxg) [The condition 
L, e f  = 0 involves rather delicate domain questions. Avoiding these problems, 
in Ref. 14 the stationary solution (12) is obtained as a limit t ~ oo starting 
with a suitable initial distribution.] 
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To get some idea of what the stationary distribution looks like, we should 
find the absorption probabilities P~(q, f2). For the Boltzmann equation they 
cannot be computed explicitly. [Obviously, they are related to the widely 
studied slab albedo problem, (2~ where one is basically interested in 
P2(0, f2).] Using the reults of Ref. 14, which apply to more general cases, 
we have, however, the following rigorous estimates: 

Z q- p - i  COS 0 ~< P2(q, [2) <~ z + p-l(1 + cos O) 
L + p-i L + p-1 (13) 

Pl(q, f~) + P2(q, f~) = 1 

and 

47r 1 ( m q  
3 pL + ~  <~ Js df~ cos OP2(q, f~) ~< 4at 1 (14) 

2 3 pL 

There is a simple intuitive argument why (13) should be true. If  one 
divides A into n horizontal slabs of thickness dby  planes Sj, j = 1 .... , n - 1, 
then starting on any S~ the particle should have equal probability of reaching 
Sz- 1 or Sz + 1. Since hitting the top or bottom requires transversing intervening 
planes whose number is proportional to L - z and z, respectively, their 
respective probabilities should be in ratio z / (L - z), which leads to P2(q, ~)  = 
z/L. The result (13) shows that this argument is indeed correct up to errors 
of the order of a mean free path. 

Using (13) and (14), one can easily compute the local density, the 
temperature profile, and the heat flow for L >> O-1 We give here only the 
expression for the heat flow in the case where pl and pz are Maxwellians 
corresponding to temperatures T1 and T2 normalized as in (2). We obtain 

8 [2"~ 1'2 (T1T2) 1/2 1 T1 - T2, p-1 (15) 
J ( q ; L )  = 5 \~r) ~/T-[~ + ,V/~2p " L L>> 

which is of the form expected from Fourier's law. For  7"1 and/ '2  close to T 
the thermal conductivity behaves as p - lx /T .  

It is instructive to rewrite the stationary state (12) using the asymptotic 
behavior of P~(q, ~).  In general, close to equilibrium, one would expect a 
steady state of the form 

f = fo + ( V T ) f l  + ... (16) 

f0 is a state of "local  equilibrium" and (VT)ft  gives the correction to local 
equilibrium which is of the order l/L, since VT ~ 1/L. By i tselff t  should 
have a well-defined limit as L -+ oo and averages over f l  would yield the 
transport coefficients, e.g., the thermal conductivity x(q) in the infinite- 
volume limit would be given by x(q) "= �89 f dp p~ p2fl(q, p;  T1,7"2, L = oo). 
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As in equilibrium, the infinite-volume limit is taken to avoid boundary 
corrections. 

For a Boltzmann fluid (i.e., one where the one-particle distribution 
function evolves according to the nonlinear Boltzmann equation), (16) 
formally results from the Enskog expansion with local equilibrium defined 
as local Maxwellian corresponding to density, momentum, and energy 
density. Using (14), we can prove (16) in the case of the linear Boltzmann 
equation. Since energy is conserved in a collision, local equilibrium does not 
correspond to local Maxwellian, but rather to a distribution 

2 

fo(q,P) = ~ aa(q)o=(P) (17) 
C~=1 

where a~(q) and a2(q) are determined such that fo(q, P) has the same density 
and energy density as f (q ,  p). For large L, one obtains 

fo (q ,p )=  N - l [ p ~ ( v ) ~ - ~ +  p2(V)L ] (t8) 

and the correction term (7.  T) f l  as 

cos 0 (19) [(V. T)f~](q, p; 7"1, T2, L) = N-~[pl(v) - p2(v)] Lp 

It is clear that limL~ | f~(q, p; T~, T2, L) exists. However, if we move both 
the bottom and top wall to infinity as zbottom = - a L  and zto" = L, a > O, 
then the limit will depend on a. If we consider a small temperature difference 

lira lira fx(q, p; T - ~, T + ,, L) (20) 

then this limit exists and is independent of the way we took the infinite-volume 
limit. In the case where p~ and p2 are Maxwellians, one obtains 

lira lim f l(q,P; T -  ~, T +  E,L) 
~0 L~o 

1 ~/2 cos 0 -2 -T  = 8"--~ ~ ( -v2  + 4T)exp  (21) 

We note that the density flux f dp pf~(q, p) = O. 
We expect a corresponding situation for the Lorentz gas with finite R. 

The results of the next section indicate that, at least for small R, this expecta- 
tion is quite reasonable. However, since we cannot control the limit R ~ 0 
uniformly in L, there is at the present no proof that limL~ ~ f(~R~(L) exists for 
the Lorentz gas. 
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4. A P P R O A C H  OF S T A T I O N A R Y  STATES TO THE 
B O L T Z M A N N - G R A D  L I M I T  

The convergence of the dynamics of the Lorentz gas as R ~ 0 to the 
dynamics described by the linear Boltzmann equation is proved in Ref. 17 
for a fixed time t. The convergence of stationary states poses the additional 
difficulty that the absorption time (for those trajectories that are absorbed) 
is unbounded with a finite expectation. We first prove: 

kemma 1. The absorption probabilities converge pointwise 

lim p~R~(q, ~2) = P~(q, f2), ~ = 1, 2 (22) 
R--*0 

ProoL To simplify notation we set v = 1 and omit the argument v. We 
consider all paths that reach the top wall before hitting the bottom wall. If  
the particle collides n times with scatterers before reaching the top wall, we 
parametrize the path in the following way: The particle starts at (q, f~). 
It travels with unit speed a time tx, including specular reflection at the 
boundaries with no temperature. This defines the first collision point, 
provided that the particle did not reach the walls with temperature. The 
particle is then scattered by an angle t)l relative to the incoming velocity and 
travels with unit speed a time t2. This defines the second collision point, 
provided that the particle did not reach the walls with temperature, etc. We 
require that the (n + 1)th collision point is at the top wall. The latter condi- 
tion fixes t~§ Therefore a path with n collisions is specified by ( t l ,  f~  ..... 
t~, f2,). Let r i ~ R a be the vector with polar coordinates (tj, ~j) and let us 
denote by I'~(q, f~) = R z~ the set of all paths that start at (q, f~) and that 
reach the top wall before hitting the bottom wall with precisely n collisions. 

Let I '~(q,  ~2) = R ~ be the set of all paths starting at (q, f2) such that 
after n collisions they reach the top wall before hitting the bottom wall and 
such that every scatterer collided with is hit precisely once. Then the absorption 
probability p~R~(q, f~) can be split into two parts 

p(=m(q, f~) = ecRu ~'~, f~) + --=P(mt",,~v, s (23) 

P~)(-=.,~q, f~) accounts for all paths in P(,~(q, g2) and the remainder p~Ru f~) 
contains all multiple scattering events. Let V(R~(q, f~lr~ . . . . .  r . )  be the volume 
of{q' s A I Iq - q ' l  >t R, Iq(t) - q ' l  ~< R,q ( t )mov inga long thepa thspec i f i ed  
by rt ..... r~}. Then 

~ 1 fi. 

x exp[-(~rRZ)-lpV(R)(q, n l r z  ,..., r,)] (24) 

1",.~ is the set of all configurations ofn  scatterers producing a patla in p(R)(q, f~), 



646 Joel L. Lebowitz and Herbert Spohn 

and V(R)(q, f~]rl ..... r.) is considered here as a function of Q1 ..... Q. .  Going 
over to the coordinates of the path, the volume element transforms as 

dQ1 "" dQ,~ = dtj df~j 
Y = l  

Taking into account that the n[  permutations of the n scatterers produce 
the same path, we obtain 

~(R)t~ f~) = dts d~s Z 2 , s k f f ,  
n = 0 (rO(q,Q) 

x exp[-(~rR2)-lpV(n)(q, f~lrl .... , r,)] (25) 

Let P~).,(q, f~) be the nth term in the sum (25). As R -+ O, F~R)(q, f~) 
F,(q, Q). For  small R, V(~)(q, O l r l  ..... r . )  is a small tube around the actual 
path, implying that (~rR2)-IV(R)(q, f~lra,..., r . )  converges to tl + ... + t ,+l .  
Therefore we expect that 

lim ~2.~..~,P(s) i~ (s = P2,~(q, f2) 
/~'-* 0 

n [ n + l  

= ( ~ ) f r . r  dt 'df~ 'expt-P,~=l t,) (26, 

We show that the integrand exp[-(TrRZ)-ipV(n)(q, f~lr~ .... ,r.)] has an 
integrable bound uniform in R. Then (26) follows by dominated convergence. 
By inspection 

'2 (rrR2)- l V(~)(q, a ir1  ,..., r , )  >1 n [rjl (27) 
] = 1  

and therefore 

8, = It, l -5  arj exp[-(~rR2)-lV(~)(q, ~lrl,..., r , ) ]  ~< (28) 

From the probabilistic interpretation of the linear Boltzmann equation 
described in Section 3 we conclude that 

P2(q, ~) = ~ P2,.(q, f~) (29) 
n = O  

To show that the sum (25) converges to the sum (29) and that the remainders 
in (23) converge to zero as R --> 0 we use positivity and normalization. We 
have (14) 

2 

~ P , ( q ,  f2) = 1 (30) 
a-~--1 



Transport Properties of the Lorentz Gas : Fourier's Law 647 

By (23) and by the Lemma of Fatou 
2 2 9. 

1 >1 ~ p(n,t~,~,,,,q, f2) >/ ~ lira infP~R.2(q,. ~2) >1 ~, P~(q, f2) = 1 
==i ==I ~=1 

Therefore lim inf P(~R,2(q, f2) = P~(q, ~). Furthermore, 
2 

lira sup p[R~(q, g2) <<. lim sup ~ p(Ru f~) + lira su "-rvt-P(m(~2,st~/, f2)] 

Therefore 

Since 

<~ 1 - P2(q, f2) = Pz(q, f~) 

(31) 

(32) 

2 2 

~=i ~=i 

and by (30) and (33) 
2 

lim ~ pcR,t~=,r,q, f2) = 0 (34) 
R~O ==1 

Since ~ = 1 p~Ru ~q) >/ 0, (34) together with (33) proves (22). �9 

If  we consider p O(q, f2) as random variables on F with measure tz <R), 
then it is easy to convince oneself that their variance converges to Pl(q, f2) x 
P2(q, f2) in the Boltzmann-Grad limit and they therefore still fluctuate for 
small R. The next lemma shows, however, that if we start out the Lorentz 
particle in a probability distribution g(q, f~) dq dO which is absolutely con- 
tinuous with respect to the Lebesque measure, then the random variables 
Q ~+ f^ x s2 dq dO g(q, f~)pR(q, f2) do not fluctuate any more as R ~ 0. 

l . emma  2. Let g : A x S 2 __> R be integrable. Then the random variable 
F~(Q) = fA• dq dO g(q, ~))e~6)(q, ~) on I" with measure tz (R) converges in 

probability to fA ~ s~ dq dU2 g(q, f2)P~(q, f~) as R -+ 0, a = 1, 2. 

ProoL We note first that the average of the square of F2 is 

~ ~(. • dq dr2 ,~r • d'q' df2'g(q, ~)g(q', f~') .,-(- dl~(R'(Q) P2Q(q, ~))P26)(q', f2') 

(35) 

Consider now a Lorentz gas with two moving particles, one starting at 
(q, f2), the other at (q', f~'). Then the third factor in (35) can be regarded as 
the probability of both particles being absorbed at the top wall {z = L} 
before hitting the bottom wall {z = 0}. There are correlations between 
PzO(q, f2) and P2 (q,  f2'), since both particles may collide with the same 

lim pcRu f2) = P~(q, f2) (33) 
R-'*0 
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scatterer. We now use the same techniques as in the proof of Lemma 1. If  
(q, f~) ~ (q', f~'), we consider only those paths for which both particles are 
absorbed at {z = L} and for which there are no recollisions (one particle 
collides with the same scatterer more than once) and no double collisions 
(both particles collide with the same scatterer). Then, repeating the arguments 
in the proof of Lemma 1, this sum converges to P2(q, f~)P2(q', f2'). Considering 
also the combinations 11, 12, 21, the contribution of the remaining paths has 
by normalization to go to zero as R ~ 0. Since {q = q'} x {f2 = f2'} is a set 
of measure zero, we conclude that (35) converges to 

[ fAxs2 dq df~ g(q, f~)P2(q, f~)] 2 

as R ~ 0, i.e., (F2) - (F2) 2 --~ 0 as R --~ 0 and so the lemma is proved. �9 

We combine Lemmas 1 and 2 to obtain the main result of our investiga- 
tion. 

T h e o r e m .  Let f(~) be the stationary state of  the Lorentz gas [cf. (9)] 
and let f be the stationary state of the linear Boltzmann equation [cf. (12)]. 
Then 

lim f dq dp i f  cRy(q, p) _ f(q, P)l = 0 (36) 
R-~O J A  • R a 

i.e., f(n~ converges to f in the Ll-norm. Furthermore, let g : A x R a --~ ~ be 
bounded and measurable. Then the random variable 

Q ~ f dq dp g(q, p)fO(q, p) 
JA • R3 

on F with measure/z tR) [cf. (7)] converges in probability to 

fA~ dq dp g(q, p)f(q, p) 
Ra 

ProoL By Lemma 2, Q ~ N(Q) converges in probability to N. There- 
fore/ztR)(Yo) -~ 1 as R --~ 0. Given ~ --~ 0, we can find a small enough R such 
that Y0 can be partitioned into Yo' u Y~ in such a way that/z(~)(Fo) < c, 
/z(R)(Y0 ') > 1 -- 2e, and IN(Q) - N[  < �9 for all Q e I'0'. Therefore 

1 - , dlzC~(Q ) p~(p)pO(q, G) + (1 - ,) dp(R~(a)f~ 
~v-4-, o" = 

<~ f,R)(q, p) 
I + E  9. 

+ (1 + e) [ d~(~(Q)fe(q,p) (37) 
Jr 



Transport Properties of the Lorentz Gas : Fourier's Law 649 

Using the normalization o f f  ~ and f ,  we conclude that 

fA dqdp f r dtz(m(Q)fQ(q,p) < .c (38) 
x ~ 

with an appropriate constant c. 
The condition (38) combined with Lemma 1 and (37) implies the L ~- 

convergence of f<m as R - +  0. The second assertion of  the theorem is an 
immediate consequence of Lemma 2. �9 

Let us work out what the theorem tells us about the heat flow in the 
Lorentz gas. We consider the steady-state heat flux JQ(q; L) at q as a random 
variable on V with measure/L cm [cf. (10)]. Although the second part of the 
theorem does not strictly apply, the argument used in the proof  of Lemma 2 
shows that J~(q; L) does not fluctuate in the limit as R --> 0. Therefore, for a 
fixed L, given any E > 0, we can find an R' sufficiently small such that for 
R<~R' 

I J~(q; L) - J(q; Z)l < ,/Z 

for all configurations Q in a set F ~ of measure/~<m(F~ > 1 - ~, i.e., up to a 
set of measure E, the difference in the heat conductivities I ~ ( q ;  L)  - ~(q; Z)[ 
is bounded by ~. Furthermore, in the case where p~ is a Maxwellian corre- 
sponding to temperature T, ,  a = 1, 2, by Section 3, for L >> p-~, x(q;L) is 
independent of L and q and given by 

5. C O M M E N T S  

(i) More general stochastic boundary conditions: A real gas-surface 
interaction can be more complicated than assumed here. <a> Therefore, it is 
useful to notice that our results remain valid for a more general class of 
stochastic boundary conditions. If  we denote by Kg(dp'lp), ~ = 1, 2, the 
transition probability at the point q of the ~th surface, then we assumed in 
this paper K~"(dp'lp ) = (1/~)le-p'lp~(p')dp'. Going back to the boundary 
condition (5), we observe that f o  is still stationary, if we assume that the 
kernel Kq~'(dp'lp) is given by the transition density 

2  g(a'la) 
with the properties 

fo ~ dv k~"(v'lv)vap~(v) = v'p.(v'), # = 1, 2 o:, 

fc d~  ~g(a ' l a ) l cos  01 = ]cos 0'l, e .s  0 (39) 
e-~<O} 
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(ii) Smooth potentials: The validity of Fourier's law should be inde- 
pendent of the details of the microscopic scattering. Therefore, we describe 
in some detail how to extend our analysis to the case of randomly distributed 
scatterers with a smooth potential. (The extension to a potential with hard 
core together with a smooth part is then obvious.) 

First, we study the construction of a stationary measure for a fixed 
configuration Q of scatterers. Let V : 1~3 _+ ~ be a twice differentiable central 
potential of range 1 and let Vn(q) -- V(q/R).  For a given configuration Q of 
scatterers, Tt Q is now the flow generated by the Hamiltonian 

H e p2 ~=1 = -~ + V~(q - Q,), Q = (Q1,..., Qj) (40) 
= 

together with specularly reflecting boundary conditions. At the top and 
bottom wall we assume the same stochastic boundary conditions as in Section 
2. To avoid notational complications the scatterers are not allowed to touch 
either the top or bottom wall. A stationary densityf~ p) still has to satisfy 
the conditions 1-3 of Section 2. 

In contrast to the hard-sphere case, the absorption probabilities will now 
depend on [p]. Therefore we cannot find the solution to (4) by inspection. In 
fact, we cannot even guarantee the existence of a solution at all. (There are 
general theorems for Markov processes assuring the existence of a stationary 
probability measure absolutely continuous with respect to some given 
measure. (23'2~) Unfortunately, the assumptions of those theorems are not so 
easily checked for the case at hand.) There is, however, a way out which, 
although mathematically not quite so appealing, is physically acceptable. 
The basic idea is to discretize the emission probabilities. For  this purpose we 
choose a finite partition {Al,m}m~=l of the bottom wall and a finite partition 

M 2  {A2,m}m =~ of the top wall. We assume the following new stochastic boundary 
conditions: If  the particle arrives at the ath wall in A . . . .  then ,  independent 
of its incoming velocity and position of arrival in A . . . .  it is emitted uniformly 
spread out over A~.,, with velocity distribution p~(p) max(0, e.p) dp. 

The boundary values of the stationary density f ~  have to be of the 
form 

f ~  y, (a - 1)L, p) = g,,m(Q)p,(p), a = 1, 2 (41) 

for (x, y ) e  A . . . .  e.p >1 O, with nonnegative constants g~,m(Q) to be deter- 
mined. Let 

fo f K~(a, mlfl, n) = IA=,ml -~ dx dy dv d a  
a , m  e ' f2~<O} 

• v 3 c o s  o y, - 1)L, p) (42) 
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Inserting (41) in (4), we obtain 

2 MB 

g~.m(Q) = ~ ~ Ko( a, m[fl, n)gz.~(Q) (43) 
B=I ~=i 

Since KQ(=, mlfl , n) >i 0 and %3=i ~MB=I KQ( ~, mlfl, n) = I, K Q is a finite- 
dimensional stochastic matrix and (43) always has a solution, also denoted 
by g~,m(Q). The simplicity of hard-sphere scatterers stems from the fact that 
in this case K ~ is doubly stochastic, which implies that g~,m(Q) = 1 is always 
a solution. Let 

P~.m(q, P) = POnbs( Ac~,ralq, P) (44) 

Then, as in Section 2, the stationary solut ionf  ~ is given by 

9. M a  

f~ = N(Q) -1 ~ ~ g~,m(a)p.(P)P~m(q,P) (45) 
CC=I m=l 

with suitable normalization constant N(Q). Again, we define the stationary 
distribution f(R~(q, p) as the average of (45) over the Poisson distribution. 

In the Boltzmann-Grad limit, R -+ 0, the time evolution of the Lorentz 
gas is described by a linear Boltzmann equation, where the collision term is 
now 

vp( fs~ ~(df~'lO)f(q, f~', v, t) - f(q, f2, v, t ) )  

~(df2'[ f2) is the differential cross section of the potential V, i.e., the probability 
of being scattered in direction df~' given a uniform incident beam in direction 
f2. One can show that there is a unique stationary solutionf(q, p) satisfying 
the stochastic boundary conditions. I f L  >> p- ~ x (degree of forward scatter- 
ing), then Fourier's law is valid. 

The convergence o f f  (R> as R - +  0 is now more difficult to handle. The 
crucial fact is: The absorption probabilities f d/z(R>(Q) P~(q, p) = p(R~,~,m~q, r P) 
converge pointwise to the corresponding absorption probabilities P.,m(q, P) 
of the linear Boltzmann equation and the "smeared ou t"  absorption proba- 
bilities f dq dp P~162 converge in probability to j" dq dpP.,m(q,p)r 
(The proof is analogous to those of Lemmas 1 and 2.) 

We note that the matrix elements of K ~ are of the form 

f dq P~m(q, p)~b(q, dp P) 

for some @. Therefore K ~ converges in probability to K and 

lim dl~(R'(Q) g~,~(Q) = ~, ~, K(a, mIfl , n) lim dl~(R'(Q) gB,~(Q) (46) 
R ~ O  J R ~ O  B=I n=l 
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Let g,,,, be the solution of (46). One checks that g,.m(Q) converges in proba- 
bility to g,~,m as R---> 0. As before, N(Q) converges to N in probability as 
R -+ 0. Now, we have the same situation as in the proof of the theorem. By 
the same argument we conclude then that f(R) converges to f in the Ll-norm 
as R -+ 0. Expectations in the stationary state converge in probability. 

We summarize: The theorem is valid for scatterers with a twice differen- 
tiable central potential VR(q) = V(q/R) with V of range 1. 

(iii) Diffusion. In this paper we concentrated on the heat flow. But our 
method is also applicable to diffusion--in fact, diffusion is considerably 
easier to handle, in particular for scatterers with a smooth potential. 

We consider a slab of thickness L of random scatterers parallel to the 
x-y plane. (B is now the entire x-y plane t) From the bottom there is an 
incident beam with speed v and uniform angular distribution. We assume 
complete absorption for a particle leaving the slab. (We can easily build a 
strictly mechanical model corresponding to these boundary conditions: We 
fill the half-space {z < 0} with an infinitely extended ideal gas with a constant 
density and velocity distribution corresponding to the incident beam. When- 
ever a particle leaves the strip {0 <~ z ~< L} it moves freely.) Then the 
stationary distribution in the slab is simply cP(~)(q, f~; L) dq df~, where c is a 
constant depending on the density of the incident beam. Therefore the 
stationary density is given by 

n(R)(q; L) = c ~s2 dr2 p(R)(q, f2; L) (47) 

and the steady current at the point q through a cross-sectional area parallel 
to the x-y plane is given by 

j(n)(q; L) = cv fs~ dO cos 0 p(n)(q, f2; L) 

We expect for large L 

j(R)(q; L) = bD(R>(1]L) 

(48) 

(49) 

with b some constant independent of R and L. 
By Lemma 1, in the Boltzmann-Grad limit, R ---> 0, n(n)(q; L) converges 

to n(q; L), and j(R)(q; L) converges to j(q; L), where n(q; L) and j(q;  L) are 
given by the stationary solution of the linear Boltzmann equation with the 
boundary conditions specified above. By (13) and (14), fo rL  >> p-1, we obtain 

4zrv L - z  
j(q; L) = -~--~, n(q; L) = c4~.------ff- (50) 
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According to Fick's law, j (q )  = - D Vn(q), which yields the diffusion con- 
stant D = �89 Therefore for finite R we are led by (49) to define the 
diffusion constant as 

D ( ~ =  lim 1 L~ o~ ~ LJ(R~(q; L) 

vL 
= ~rr dr2 cos 0 e(R)(q, f2; L) (51) 

2 

This limit should exist and be independent of  q. 
On the other hand, as is well known, (25) the diffusion constant should be 

related to the time integral over the velocity autocorrelation function. One 
considers an infinitely extended Lorentz gas, i.e., a uniform distribution of 
scatters over the whole space, and argues that, if the Lorentz particle starts 
with a uniform velocity distribution and a fixed speed v, then the mean square 
displacement ([q(t) - q]2)(R) should behave as 6D(R)t for large t as expected 
f rom the diffusion equation. Here, (.)(R) denotes the average over the Poisson 
distribution of scatterers of  radius R and over the initial velocity distribution 
(1/4rr) dr2. This leads then immediately to 

D (R) = lim �89 dt (p(t).p)~n) 
T --~ oo 

f; = lira dt ((cos O(t) cos O)(R)v 2 (52) 
T-*~O 

For the linear Boltzmann equation, (51) and (52) give the same answer. 
We expect this to be true also for finite R. However, even by formal manipula- 
tions we were unable to check the conjectured identity. 

In most numerical experiments, (26-28~ trying to obtain D (~ by computer 
simulations, and in theoretical studies, (18'28'a~ trying to obtain series expan- 
sions for D (R~, the starting point is (52). However, (51) seems to be closer to 
how one actually measures a diffusion constant and appears to be as accessible 
to numerical studies as (52). Indeed one investigation of this type was done by 
Visscher. (al~ More investigations in this direction would be of great interest. 
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